Abstract

Following the idea of the density functional approach, we develop a generalized Bogoliubov theory of an interacting Bose gas confined in a one-dimensional harmonic trap, by using a local chemical potential - calculated with the Lieb-Liniger exact solution - as the exchange energy. At zero temperature, we use the theory to describe collective modes of a finite-particle system in all interaction regimes from the ideal gas limit, to the mean-field Thomas-Fermi regime, and to the strongly interacting Tonks-Girardeau regime. At finite temperature, we investigate the temperature dependence of collective modes in the weak-coupling regime by means of a Hartree-Fock-Bogoliubov theory with Popov approximation. By emphasizing the effects of finite particle number and nonzero temperature on collective mode frequencies, we make comparisons of our results with the recent experimental measurement [E. Haller et al., Science 325, 1224 (2009)] and some previous theoretical predictions. We show that the experimental data are still not fully explained within current theoretical framework.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call