Abstract
The neutron star inner crust is assumed to be superfluid at relevant temperatures. The contribution of neutron quasiparticles to thermodynamic and transport properties of the crust is therefore strongly suppressed by the pairing gap. Nevertheless, the neutron gas still has low-energy excitations, namely long-wavelength collective modes. We summarize different approaches to describe the collective modes in the crystalline phases of the inner crust and present an improved model for the description of the collective modes in the pasta phases within superfluid hydrodynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.