Abstract

It is known that a constant magnetic field is a strong catalyst of dynamical chiral symmetry breaking in 2+1 dimensions, leading to generating dynamical fermion mass even at weakest attraction. In this work we investigate the collective modes associated with the dynamical chiral symmetry breaking in a constant magnetic field in the (2+1)-dimensional Nambu--Jona-Lasinio model with continuous U(1) chiral symmetry. We introduce a self-consistent scheme to evaluate the propagators of the collective modes at the leading order in 1/N. The contributions from the vacuum and from the magnetic field are separated such that we can employ the well-established regularization scheme for the case of vanishing magnetic field. The same scheme can be applied to the study of the next-to-leading order correction in 1/N. We show that the sigma mode is always a lightly bound state with its mass being twice the dynamical fermion mass for arbitrary strength of the magnetic field. Since the dynamics of the collective modes is always 2+1 dimensional, the finite temperature transition should be of the Kosterlitz-Thouless (KT) type. We determine the KT transition temperature $T_{\rm KT}$ as well as the mass melting temperature $T^*$ as a function of the magnetic field. It is found that the pseudogap domain $T_{\rm KT}<T<T^*$ is enlarged with increasing strength of the magnetic field. The influence of a chiral imbalance or axial chemical potential $\mu_5$ is also studied. We find that even a constant axial chemical potential $\mu_5$ can lead to inverse magnetic catalysis of the KT transition temperature in 2+1 dimensions. The inverse magnetic catalysis behavior is actually the de Haas--van Alphen oscillation induced by the interplay between the magnetic field and the Fermi surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call