Abstract

Collective lattice resonances in disordered 2D arrays of spherical Si nanoparticles (NPs) have been thoroughly studied within the framework of the coupled dipole approximation. Three types of defects have been analyzed: positional disorder, size disorder, and quasi-random disorder. We show that the positional disorder strongly suppresses either the electric dipole (ED) or the magnetic dipole (MD) coupling, depending on the axis along which the NPs are shifted. Contrarily, size disorder strongly affects only the MD response, while the ED resonance can be almost intact, depending on the lattice configuration. Finally, random removing of NPs from an ordered 2D lattice reveals a quite surprising result: hybridization of the ED and MD resonances with lattice modes remains observable even in the case of random removing of up to 84% of the NPs from the ordered array. The reported results could be important for rational design and utilization of metasurfaces, solar cells, and other all-dielectric photonic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.