Abstract

The Skyrme potential energy density functional is introduced into the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) model and the updated version is applied to studying the directed and elliptic flows of light particles (protons, neutrons, deuterons, tritons, $^3$He and $^4$He) in $^{197}$Au+$^{197}$Au collisions at beam energies 150, 250 and 400 MeV/nucleon. The results are compared with the recent FOPI experimental data. It is found that the yields and collective flows of light particles can be described quite well. The influence of the equation of state (EoS), medium-modified nucleon-nucleon elastic cross sections (NNECS) and cluster recognition criteria on the directed and elliptic flows is studied in detail. It is found that the flows of light particles are sensitive to the medium-modified NNECS, but not sensitive to the isospin dependent cluster recognition criteria. It seems difficult, however, even with the new data and calculations, to obtain a more accurate constraint on the nuclear incompressibility $K_0$ than the interval 200-260 MeV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.