Abstract

An accurate understanding of ion-beam transport in plasmas is crucial for applications in inertial fusion energy and high-energy-density physics. We present an experimental measurement on the energy spectrum of a proton beam at 270 keV propagating through a gas-discharge hydrogen plasma. We observe the energies of the beam protons changing as a function of the plasma density and spectrum broadening due to a collective beam-plasma interaction. Supported by linear theory and three-dimensional particle-in-cell simulations, we attribute this energy modulation to a two-stream instability excitation and further saturation by beam ion trapping in the wave. The widths of the energy spectrum from both experiment and simulation agree with the theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.