Abstract
Semiconductur nano- and micropillars represent a promising platform for hybrid nanodevices. Their ability to couple to a broad variety of nanomechanical, acoustic, charge, spin, excitonic, polaritonic, or electromagnetic excitations is utilized in fields as diverse as force sensing or optoelectronics. In order to fully exploit the potential of these versatile systems e.g. for metamaterials, synchronization or topologically protected devices an intrinsic coupling mechanism between individual pillars needs to be established. This can be accomplished by taking advantage of the strain field induced by the flexural modes of the pillars. Here, we demonstrate strain-induced, strong coupling between two adjacent nanomechanical pillar resonators. Both mode hybridization and the formation of an avoided level crossing in the response of the nanopillar pair are experimentally observed. The described coupling mechanism is readily scalable, enabling hybrid nanomechanical resonator networks for the investigation of a broad range of collective dynamical phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.