Abstract
We investigate the dynamics of nonlocally coupled Hindmarsh-Rose neurons, modified by coupling the induced magnetic flux to the membrane potential with a quadratic memristor of strength k. The nonlocal coupling consists of the interaction of each neuron with its neighbors within a fixed radius, which influence the membrane potential of the neuron with coupling intensity σ. For such local dynamics and network of interactions, we investigate how variations of k and σ affect the collective dynamics. We find that when increasing k as well as when increasing σ, coherence typically increases, except for small ranges of these parameters where the opposite behavior can occur. Besides affecting coherence, varying k also affects the pattern of bursts and spikes, namely, for large enough k, burst frequency is augmented, the number and amplitude of the spikes are reduced, and quiescent periods become longer. Results are displayed for an intermediate range of interactions with radius 1/4 of the network size, but we also varied the range of interactions, ranging from first-neighbor to all-to-all couplings, observing in all cases a qualitatively similar impact of induction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.