Abstract
Various microorganisms use chemotaxis for signaling among individuals-a common strategy for communication that is responsible for the formation of microcolonies. We model the microorganisms as autochemotactic active random walkers and describe them by an appropriate Langevin dynamics. It consists of rotational diffusion of the walker's velocity direction and a deterministic torque that aligns the velocity direction along the gradient of a self-generated chemical field. To account for finite size, each microorganism is treated as a soft disk. Its velocity is modified when it overlaps with other walkers according to a linear force-velocity relation and a harmonic repulsion force. We analyze two-walker collisions by presenting typical trajectories and by determining a state diagram that distinguishes between free walker, metastable, and bounded cluster states. We mention an analogy to Kramer's escape problem. Finally, we investigate relevant properties of many-walker systems and describe characteristics of cluster formation in unbounded geometry and in confinement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.