Abstract
Biological membranes are excellent examples of biologically relevant soft interfaces. They mediate or even govern a large variety of cellular functions [1–3]. Membranes serve as a host for membrane proteins to carry out their functions, and numerous signaling processes are either conducted inside membranes or mediated by them. Additionally, cellular membranes act as a permeability barrier, allowing only desired particles to permeate through the membrane into and out of the cell, besides which membranes are also involved in a variety of large-scale functions such as in maintaining the osmotic pressure and ion density gradients across the plasma membrane. The biological relevance of membranes is emphasized by the rather recently proposed lipid raft model [4–7], which essentially stresses the importance of understanding the interplay between lipids and proteins: membrane proteins function together with lipids. Consequently, lipid membrane structures, lipid domain coexistence, and especially the role of cholesterol in the structural properties of membranes have been paid a considerable amount of attention recently. Meanwhile, the dynamics of membranes [3,8,9] has received much less attention despite its substantial importance in, e.g., signaling, domain formation, and diffusion of lipids and proteins in the plane of the membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.