Abstract

Elucidating collective dynamics in crystalline systems is a common scientific question in multiple fields. In this work, by combination of high-precision numerical approach and analytical normal mode analysis, we systematically investigate the dynamical response of two-dimensional Lennard-Jones crystal as a purely classical mechanical system under random disturbance of varying strength, and reveal rich microscopic dynamics. Specifically, we observe highly symmetric velocity field composed of sharply divided coherent and disordered regions, and identify the order-disorder dynamical transition of the velocity field. Under stronger disturbance, we reveal the vacancy-driven shattering of the crystal. This featured disruption mode is fundamentally different from the dislocation-unbinding scenario in two-dimensional melting. We also examine the healing dynamics associated with vacancies of varying size. The results in this work advance our understanding about the formation of collective dynamics and crystal disruption, and may have implications in elucidating relevant non-equilibrium behaviors in a host of crystalline systems. Microscopic dynamics and underlying topological defects in the disruption of the Lennard-Jones lattice under random disturbance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.