Abstract

In the pursuit of scalable and energy-efficient neuromorphic devices, recent research has unveiled a novel category of spiking oscillators, termed “thermal neuristors.” These devices function via thermal interactions among neighboring vanadium dioxide resistive memories, emulating biological neuronal behavior. Here, we show that the collective dynamical behavior of networks of these neurons showcases a rich phase structure, tunable by adjusting the thermal coupling and input voltage. Notably, we identify phases exhibiting long-range order that, however, does not arise from criticality, but rather from the time non-local response of the system. In addition, we show that these thermal neuristor arrays achieve high accuracy in image recognition and time series prediction through reservoir computing, without leveraging long-range order. Our findings highlight a crucial aspect of neuromorphic computing with possible implications on the functioning of the brain: criticality may not be necessary for the efficient performance of neuromorphic systems in certain computational tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.