Abstract

We present and study an agent-based model of T-Cell cross-regulation in the adaptive immune system, which we apply to binary classification. Our method expands an existing analytical model of T-cell cross-regulation (Carneiro et al. in Immunol Rev 216(1):48-68, 2007) that was used to study the self-organizing dynamics of a single population of T-Cells in interaction with an idealized antigen presenting cell capable of presenting a single antigen. With agent-based modeling we are able to study the self-organizing dynamics of multiple populations of distinct T-cells which interact via antigen presenting cells that present hundreds of distinct antigens. Moreover, we show that such self-organizing dynamics can be guided to produce an effective binary classification of antigens, which is competitive with existing machine learning methods when applied to biomedical text classification. More specifically, here we test our model on a dataset of publicly available full-text biomedical articles provided by the BioCreative challenge (Krallinger in The biocreative ii. 5 challenge overview, p 19, 2009). We study the robustness of our model's parameter configurations, and show that it leads to encouraging results comparable to state-of-the-art classifiers. Our results help us understand both T-cell cross-regulation as a general principle of guided self-organization, as well as its applicability to document classification. Therefore, we show that our bio-inspired algorithm is a promising novel method for biomedical article classification and for binary document classification in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.