Abstract

Presented with sensory challenges, living cells employ extensive noisy, fluctuating signaling and communication among themselves to compute a physiologically proper response. Using coupled stochastic oscillators model, we propose that biological computation mechanism undertaken by insulin secreting beta-cells consists of a combination of dual intracellular Ca2+release processes to ensure multilayered exploration contributing to enhanced robustness and sensitivity. The computational output is macroscopically observed as disorder-order phase transition in a collective beta-cell response to increases in nutrient concentrations. Our own experimental data and analogies from previously described examples of biological computation suggest that the initial limited response to nutrients may be followed by an adaptive phase to expand the sensory spectrum and consolidate memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.