Abstract

In this paper, the collective behaviors of a small-world neuronal network motivated by the anatomy of a mammalian cortex based on both Izhikevich model and Rulkov model are studied. The Izhikevich model can not only reproduce the rich behaviors of biological neurons but also has only two equations and one nonlinear term. Rulkov model is in the form of difference equations that generate a sequence of membrane potential samples in discrete moments of time to improve computational efficiency. These two models are suitable for the construction of large scale neural networks. By varying some key parameters, such as the connection probability and the number of nearest neighbor of each node, the coupled neurons will exhibit types of temporal and spatial characteristics. It is demonstrated that the implementation of GPU can achieve more and more acceleration than CPU with the increasing of neuron number and iterations. These two small-world network models and GPU acceleration give us a new opportunity to reproduce the real biological network containing a large number of neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.