Abstract

The kinetics of a spin-aligned gas of interwell excitons in GaAs/AlGaAs double quantum wells (n-i-n heterostructure) is studied. The temperature dependence of the spin relaxation time for excitons, in which a photoexcited electron and hole are spatially separated between two adjacent quantum wells, is analyzed. For this purpose, use was made of pulsed circularly polarized resonant photoexcitation of intrawell 1sHH excitons by a femtosecond frequency-controlled laser. A sharp increase in the spin-relaxation rate is observed for interwell excitons upon a change in temperature from 2 to 3.6 K. This effect is associated with indirect evidence of the coherence of the collective phase of interwell excitons at temperatures below the critical value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call