Abstract
This paper presents the new experimental results concerning acceleration of deuterium ions extracted from laser plasma in the rapid-growing nonuniform magnetic field in order to initiate the nuclear reactions D(d, n)3He and T(d, n)4He. For obtaining of laser plasma a Nd: YAG laser (λ = 1,06 μm) that generates in Q-switched mode the radiation pulses with the energy W ≤ 0,85 J and duration of τ ≈ 10 ns was used. Rapid-growing magnetic field was created with the discharge of Arkadyev-Marx pulsed-voltage generator to conical coil with the inductance of 0,65 μΗ. At characteristic discharge time of 30 ns, the rate of magnetic field growth achieved 2·107 T/s. Ion velocity was determined with the time-of-flight technique. During the experiment on deuterium plasma an ion flux velocity of ∼3 · 108 cm/s was obtained, which corresponds to the deuteron energy of ∼100 keV. Herewith, for target power density of ∼5·1011 W/cm2 obtaining of up to 1015 of accelerated deuterons and up to 108 of neutrons per a pulse is expected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.