Abstract

We recently developed an electrostatic precipitator with superhydrophobic surface (EPSS), which collects particles into a 10- to 40-μl water droplet allowing achievement of very high concentration rates (defined as the ratio of particle concentration in the collection liquid vs. the airborne particle concentration per time unit) when sampling airborne bacteria. Here, we analyzed the performance of this sampler when collecting three commonly found fungal spores--Cladosporium cladosporioides, Penicillium melinii, and Aspergillus versicolor--under different operating conditions. We also adapted adenosine triphosphate (ATP)-based bioluminescence for the analysis of collection efficiency and the concentration rates. The collection efficiency ranged from 10 to 36% at a sampling flow rate of 10 l/min when the airborne fungal spore concentration was approximately 10(5)-10(6) spores/m(3) resulting in concentration rates in the range of 1 × 10(5)-3 × 10(5)/min for a 10-μl droplet. The collection efficiency was inversely proportional to the airborne spore concentration and it increased to above 60% for common ambient spore concentrations, e.g., 10(4)-10(5) spores/m(3). The spore concentrations determined by the ATP-based method were not statistically different from those determined by microscopy and allowed us to analyze spore concentrations that were too low to be reliably detected by microscopy. The new electrostatic precipitator with superhydrophobic surface (EPSS) collects airborne fungal spores into small water droplets (10 and 40 μl) allowing achievement of concentration rates that are higher than those of most currently available bioaerosol samplers. Biosamplers with high concentration rates enable detection of low ambient aerial bioaerosol concentrations in various environments, including indoors air, and would be useful for improved exposure assessment. A successful adaptation of the adenosine triphosphate (ATP)-based bioluminescence assay for the quantification of fungal spores from a specific species enables fast sample analysis in laboratory investigations. This rapid assay could be especially useful when investigating the performance of biological samplers as a function of multiple operational parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.