Abstract

The fruit fly Drosophila melanogaster is an important model for basic research into the molecular mechanisms underlying cell function and development, as well as a major biomedical research tool. A significant advantage of Drosophila is the ability to apply live cell imaging to a variety of living tissues that can be dissected and imaged in vivo, ex vivo, or in vitro. For example, such imaging can be used for visual genetic screens such as analysis of morphological characteristics or of the distribution of fluorescently tagged proteins in living embryos. Indeed, Drosophila embryos have proven to be a useful model system for studying a variety of cellular processes such as asymmetric division, migration, wound healing, apoptosis, and fasciculation, as well as for tracking lipid droplet motility, protein recycling, fast mRNA transport, and the movement of chromosomal loci within individual cells. A crucial first step before imaging is preparation of the experimental material to ensure physiological relevance and to achieve the best conditions for image quality. Because it contributes to autofluorescence and lack of transparency, it is useful to remove the chorion before imaging by treating the embryos with bleach. This protocol describes the collection and mounting of Drosophila embryos for live cell imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.