Abstract

There has been an increased interest in speech pattern analysis applications of Parkinsonism for building predictive telediagnosis and telemonitoring models. For this purpose, we have collected a wide variety of voice samples, including sustained vowels, words, and sentences compiled from a set of speaking exercises for people with Parkinson's disease. There are two main issues in learning from such a dataset that consists of multiple speech recordings per subject: 1) How predictive these various types, e.g., sustained vowels versus words, of voice samples are in Parkinson's disease (PD) diagnosis? 2) How well the central tendency and dispersion metrics serve as representatives of all sample recordings of a subject? In this paper, investigating our Parkinson dataset using well-known machine learning tools, as reported in the literature, sustained vowels are found to carry more PD-discriminative information. We have also found that rather than using each voice recording of each subject as an independent data sample, representing the samples of a subject with central tendency and dispersion metrics improves generalization of the predictive model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.