Abstract

Many organisms exhibit collecting and gathering behaviors as a foraging and survival method. Benthic macroinvertebrates are classified as collector-gatherers due to their collection of particulate matter. Among these, the aquatic oligochaete Lumbriculus variegatus (California blackworms) demonstrates the ability to ingest both organic and inorganic materials, including microplastics. However, earlier studies have only qualitatively described their collecting behaviors for such materials. The mechanism by which blackworms consolidate discrete particles into a larger clump remains unexplored quantitatively. In this study, we analyze a group of blackworms in a large arena with an aqueous algae solution (organic particles) and find that their relative collecting efficiency is proportional to population size. We found that doubling the population size (N = 25-N = 50) results in a decrease in time to reach consolidation by more than half. Microscopic examination of individual blackworms reveals that both algae and microplastics physically adhere to the worm's body and form clumps due to external mucus secretions by the worms. Our observations also indicate that this clumping behavior reduces the worm's exploration of its environment, possibly due to thigmotaxis. To validate these observed biophysical mechanisms, we create an active polymer model of a worm moving in a field of particulate debris. We simulate its adhesive nature by implementing a short-range attraction between the worm and the nearest surrounding particles. Our findings indicate an increase in gathering efficiency when we add an attractive force between particles, simulating the worm's mucosal secretions. Our work provides a detailed understanding of the complex mechanisms underlying the collecting-gathering behavior in L. variegatus, informing the design of bioinspired synthetic collector systems, and advances our understanding of the ecological impacts of microplastics on benthic invertebrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call