Abstract

In the past several years, autonomous driving turned out to be a target for many technical players. Automated driving requires new and advanced mechanisms to provide safe functionality and the increased communication makes automated vehicles more vulnerable to attacks. Security is already well-established in some domains, such as the IT sector, and now spills over to Automotive. In order to not reinvent the wheel, existing security methods and tools can be evaluated and adapted to be applicable in other domains, such as Automotive. In the European H2020 ECSEL project SECREDAS, this approach is followed and existing methods, tools, protocols, best practices etc. are analyzed, combined and improved to be applicable in the field of connected vehicles. To provide modular and reusable designs, solutions are collected in form of design patterns. The SECREDAS design patterns describe solution templates to solve security, safety and privacy issues related to automated systems. The grouping and classification of design patterns is important to facilitate the selection process which is a challenging task and weak classification schemes can be a reason for a sparse application of security patterns, which represent a subgroup of design patterns. This work aims to assist automotive software and systems engineers in adopting and using technologies available on the market. The SECREDAS security patterns are based on existing technologies, so-called Common Technology Elements, and describe how and where to apply them in context of connected vehicles by making a reference to a generic architecture. This allows developers to easily find solutions to common problems and reduces the development effort by providing concrete, trustworthy solutions. The whole approach and classification scheme is illustrated based on one example security pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call