Abstract

Collect Earth is a free and open source software for land monitoring developed by the Food and Agriculture Organization of the United Nations (FAO). Built on Google desktop and cloud computing technologies, Collect Earth facilitates access to multiple freely available archives of satellite imagery, including archives with very high spatial resolution imagery (Google Earth, Bing Maps) and those with very high temporal resolution imagery (e.g., Google Earth Engine, Google Earth Engine Code Editor). Collectively, these archives offer free access to an unparalleled amount of information on current and past land dynamics for any location in the world. Collect Earth draws upon these archives and the synergies of imagery of multiple resolutions to enable an innovative method for land monitoring that we present here: augmented visual interpretation. In this study, we provide a full overview of Collect Earth’s structure and functionality, and we present the methodology used to undertake land monitoring through augmented visual interpretation. To illustrate the application of the tool and its customization potential, an example of land monitoring in Papua New Guinea (PNG) is presented. The PNG example demonstrates that Collect Earth is a comprehensive and user-friendly tool for land monitoring and that it has the potential to be used to assess land use, land use change, natural disasters, sustainable management of scarce resources and ecosystem functioning. By enabling non-remote sensing experts to assess more than 100 sites per day, we believe that Collect Earth can be used to rapidly and sustainably build capacity for land monitoring and to substantively improve our collective understanding of the world’s land use and land cover.

Highlights

  • Monitoring Land Use and Land Use Change (LULUC) through remote sensing is a common approach to generating necessary data for quantifying anthropogenic impacts on the Earth’s system.Land monitoring through remote sensing has traditionally been challenging due to the cost of acquiring satellite imagery and commercial software to conduct remote sensing analysis [1] and due to the high level of technical skill required to pre-process and analyze imagery and conduct a robust land assessment [2].Remote sensing data are used in many national and international land assessments, such as national forest inventories (e.g., France, Italy, Switzerland, USA) and the European Land Use and LandCover Survey (LUCAS) [2,3]

  • Collect Earth is a land monitoring system that can be divided into four main parts: (1) inputs; (2) a data collection framework; (3) a data management framework and (4) analytical tools for visualizing results and generating outputs

  • With nearly three quarters of the Earth’s surface impacted by human activity, it is more important than ever that countries, organizations, communities and individuals are cognizant of current, past and future land characteristics

Read more

Summary

Introduction

Monitoring Land Use and Land Use Change (LULUC) through remote sensing is a common approach to generating necessary data for quantifying anthropogenic impacts on the Earth’s system.Land monitoring through remote sensing has traditionally been challenging due to the cost of acquiring satellite imagery and commercial software to conduct remote sensing analysis [1] and due to the high level of technical skill required to pre-process and analyze imagery and conduct a robust land assessment [2].Remote sensing data are used in many national and international land assessments, such as national forest inventories (e.g., France, Italy, Switzerland, USA) and the European Land Use and LandCover Survey (LUCAS) [2,3]. The data resulting from the two phases are synergistic, as Phase 2 data can be used to estimate uncertainties within the spatial extent and area estimation of land use and land cover categories, while the latter can be used to extrapolate more detailed land characteristics (e.g., vegetation types, carbon stocks, etc.) from a relatively small number of field sites to the landscape level drawing upon the much larger number of sites assessed in the first phase This method has been adopted by countries to quantify their LULUC with low uncertainty and to address their need to report to the United Nations Framework Convention on Climate Change (UNFCCC) [4,5]

Methods
Findings
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.