Abstract

The motion performed by some protozoa is a crucial visual stimulus in microscopy analysis, especially when they have almost imperceptible morphological characteristics. Microorganisms can be distinguished through the interactions of their locomotion with neighboring elements, as observed in some parasitological analysis of Trypanosoma cruzi. In dye-free blood microscopy, the low contrast of this parasite makes it difficult to detect them. Thus, the parasite's interaction with the neighborhood, such as collisions with blood cells and shocks during the escape of confinements in cell clumps, generates collateral motions that assist its detection. Assuming that the collateral motion of the parasite can be sufficiently noticeable to overcome the dynamic contexts of inspection, we propose a novel computational approach that is based on motion saliency. We estimate motion in microscopy videos using dense optical flow and we investigate vestiges in saliency maps that could characterize the collateral motion of parasites. Our biological-inspired method shows that the parasite's collateral motion is a relevant feature for T. cruzi detection. Therefore, our computational model is a promising aid in the research and medical diagnosis of Chagas disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.