Abstract
CRMP proteins play critical regulatory roles during semaphorin-mediated neurite outgrowth, neuronal differentiation and death. Albeit having a high degree of structure and sequence resemblance to that of liver dihydropyrimidinase, purified rodent brain CRMPs do not hydrolyze dihydropyrimidinase substrates. Here we found that mouse CRMP3 has robust histone H4 deacetylase activity. During excitotoxicity-induced mouse neuronal death, calpain-cleaved, N-terminally truncated CRMP3 undergoes nuclear translocation to cause nuclear condensation through deacetylation of histone H4. CRMP3-mediated deacetylation of H4 leads to de-repression of the E2F1 gene transcription and E2F1-dependent neuronal death. These studies revealed a novel mechanism of CRMP3 in neuronal death. Together with previous well established bodies of literature that inhibition of histone deacetylase activity provides neuroprotection, we envisage that inhibition of CRMP3 may represent a novel therapeutic approach towards excitotoxicity-induced neuronal death.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.