Abstract

Collapsibility of caval vessels and stroke volume and pulse pressure variations (SVV, PPV) are used as indicators of volume responsiveness. Their behavior under increasing airway pressures and changing right ventricular afterload is incompletely understood. If the phenomena of SVV and PPV augmentation are manifestations of decreasing preload, they should be accompanied by decreasing transmural right atrial pressures. Eight healthy pigs equipped with ultrasonic flow probes on the pulmonary artery were exposed to positive end-expiratory pressure of 5 and 10 cmH2O and three volume states (Euvolemia, defined as SVV < 10%, Bleeding, and Retransfusion). SVV and PPV were calculated for the right and PPV for the left side of the circulation at increasing inspiratory airway pressures (15, 20, and 25 cmH2O). Right ventricular afterload was assessed by surrogate flow profile parameters. Transmural pressures in the right atrium and the inferior and superior caval vessels (IVC and SVC) were determined. Increasing airway pressure led to increases in ultrasonic surrogate parameters of right ventricular afterload, increasing transmural pressures in the right atrium and SVC, and a drop in transmural IVC pressure. SVV and PPV increased with increasing airway pressure, despite the increase in right atrial transmural pressure. Right ventricular stroke volume variation correlated with indicators of right ventricular afterload. This behavior was observed in both PEEP levels and all volume states. Stroke volume variation may reflect changes in right ventricular afterload rather than changes in preload.NEW & NOTEWORTHY Stroke volume variation and pulse pressure variation are used as indicators of preload or volume responsiveness of the heart. Our study shows that these variations are influenced by changes in right ventricular afterload and may therefore reflect right ventricular failure rather than pure volume responsiveness. A zone of collapse detaches the superior vena cava and its diameter variation from the right atrium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call