Abstract

In this paper the interaction of a three-level atom in V-configuration with a two-mode quantized field in cavity optomechanics is studied. To achieve the purpose, we first deduce the effective Hamiltonian and evaluate the explicit time-dependent form of the state vector of the whole system by choosing special initial conditions for atom, field and the oscillatory mirror. Interestingly, we can obtain the time evolution of atomic linear entropy, population inversion, quantum statistics and squeezing, both analytically and numerically. The results show that the entanglement between the atom and the subsystem of field and mirror, and all above-mentioned physical quantities can be appropriately controlled by the initial atom-field state condition, the parameters of cavity optomechanics as well as atom-field coupling strengths. In particular, the appearance of collapse-revival phenomenon in the entanglement and quantum photon statistics, also the full sub-Poissonian statistics in the two modes of field as well as in the mechanical mode of optomechanical system are noticeable features of the work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call