Abstract

AbstractCopolymers of methacrylic acid (MAA) and a nonionic hydrophilic monomer N‐vinylpyrrolidone (NVP) were synthesized by polymerization in aqueous solution in the absence of metal ions. The NVP content of the copolymers ranged from 2 to 36 mole % with sequences of MAA interrupted at random by a single unit of NVP at all compositions. The pH‐induced conformational transition of these copolymers was followed by potentiometric titration and viscosity studies and the results were compared with those of pure poly(methacrylic acid) (PMAA). The negative free energy of transition from the un‐ionized compact from to expanded structure showed a gradual decrease with increasing NVP content, and the collapsed conformation observable for PMAA at low degrees of ionization (0 < α < 0.3) disappeared at NVP contents greater than 15 mole%. These findings are supported by viscosity data. The results suggest that long‐range methyl–methyl hydrophobic contacts still possible in higher NVP content copolymers are not sufficient to bring about the collapse of the molecule and a minimum average sequence length of about 20 MAA units is required to compact the molecule. Hydrophilic “shielding” of MAA chains by NVP segments could also partly destabilize the collapsed structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call