Abstract

Using the recently introduced parsimonious Metropolis Monte Carlo algorithm, bead-stick polymers both with infinite-range Lennard-Jones interaction and with truncation are simulated. The focus lies on determining the Boyle temperature for long chains with thousands of repeat units and on testing for theoretically predicted logarithmic corrections. Subsequently the behavior at the infinite-chain transition temperature, i.e., the Θ temperature, is studied for chains with up to N=32768 repeat units by investigation of the scaling of the end-to-end distance, the radius of gyration, the specific heat, and their derivatives with N.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.