Abstract

The elastic collapse of thin orthotropic elliptical cylindrical shells subject to pure bending alone or combined bending and uniform normal pressure loads has been studied. Nonlinear finite deflection thin shell theory is employed and this reduces the problem to a set of nonlinear ordinary differential equations. The resulting two-point nonlinear boundary-value problem is then linearized, using quasi-linearization, and solved numerically by the “shooting technique.” Some experimental work has been carried out and the results are compared with the theoretical predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.