Abstract

Following the 2009 Pacific El Niño, a warm event developed in the tropical and subtropical North Atlantic during boreal spring of 2010 promoted a significant increase in the CO2 fugacity of surface waters. This, together with the relaxation of the prevailing wind fields, resulted in the reversal of the atmospheric CO2 absorption capacity of the tropical and subtropical North Atlantic. In the region 0–30°N, 62–10°W, this climatic event led to the reversal of the climatological CO2 sink of −29.3 Tg C to a source of CO2 to the atmosphere of 1.6 Tg C from February to May. The highest impact of this event is verified in the region of the North Equatorial Current, where the climatological CO2 uptake of −22.4 Tg for that period ceased during 2010 (1.2 Tg C). This estimate is higher than current assessments of the multidecadal variability of the sea-air CO2 exchange for the entire North Atlantic (20 Tg year−1), and highlights the potential impact of the increasing occurrence of extreme climate events over the oceanic CO2 sink and atmospheric CO2 composition.

Highlights

  • The highest impact of this event is verified in the region of the North Equatorial Current, where the climatological CO2 uptake of −22.4 Tg for that period ceased during 2010 (1.2 Tg C). This estimate is higher than current assessments of the multidecadal variability of the sea-air CO2 exchange for the entire North Atlantic (20 Tg year−1), and highlights the potential impact of the increasing occurrence of extreme climate events over the oceanic CO2 sink and atmospheric CO2 composition

  • The aim of this study is to identify the extension and quantify the impact of the sea surface temperature (SST) anomaly observed in the North Atlantic climatic event of boreal spring 2010 (Fig. 1) with regard to the CO2 uptake capacity of the basin

  • SST measured during 2010 in the North Atlantic is significantly higher than that measured in other years along both the Monte Olivia/Rio Blanco and the Colibri tracks

Read more

Summary

Introduction

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. In the region 0–30°N, 62–10°W, this climatic event led to the reversal of the climatological CO2 sink of −29.3 Tg C to a source of CO2 to the atmosphere of 1.6 Tg C from February to May. The highest impact of this event is verified in the region of the North Equatorial Current, where the climatological CO2 uptake of −22.4 Tg for that period ceased during 2010 (1.2 Tg C). Studies have suggested that the oceanic C sink may be decreasing for the last 50 years[3,4] Whether these changes are caused from anthropogenic climate change or internal climate variability is still uncertain[4,5,6], but they could significantly impact future atmospheric

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.