Abstract

We investigate the multiple stable macroscopic quantum states of a Bose-Einstein condensate in an optomechanical cavity with pump-cavity field detuning and atom-photon interaction following the experimental realization of the quantum phase transition [Nature (London) 464, 1301 (2010)]. The spin-coherent-state variational method is useful in exploring the multistability since it has the advantage of including both normal and inverted pseudospin states. In the blue detuning regime the usual transition from normal to superradiant phases still exists, however, when the atom-field coupling increases to a certain value, called the turning point, the superradiant phase collapses due to the resonant damping of the mechanical oscillator. As a consequence, the system undergoes at this point an additional phase transition to the normal phase of the atomic population inversion state. In particular, the superradiant phase disappears completely at strong photon-phonon interaction, resulting in the direct atomic population transfer between two atomic levels. Moreover, the coupling-induced collapse and revival of the superradiant state are also found in the red detuning region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call