Abstract
After cosmic inflation and before the transition to radiation domination, the cosmic energy density may have been dominated during an extended period by an oscillating massive scalar condensate. We show that during this period, sub-Hubble scale perturbations are subject to a metric preheating instability in the narrow resonance regime. We analyze in detail both, quadratic and quartic potentials. The instability leads to the growth of density perturbations which in many cases become non-linear already before the beginning of a radiation dominated Universe. This is particularly the case when requiring a phenomenologically preferred low reheat temperature. These early structures may lead to the emission of gravitational waves and the production of primordial black holes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.