Abstract
The compactization of a single DNA molecule in polyethylene glycol (PEG) solution was investigated both theoretically and experimentally. A theory is proposed taking into account the polyelectrolyte effect and redistribution of PEG within DNA coils. This approach makes it possible to describe the dependence of critical value, c, of PEG concentration at the point of DNA collapse on the degree of PEG polymerization, P, and on the concentration of low-molecular salt, ns. Observation of single DNA molecule in solution of PEG has been carried out by means of fluorescence microscopy which allows one to observe the conformation of individual DNA directly. Direct evidence that the coil–globule transition of DNA occurs as first order phase transition was obtained. It was confirmed that the critical concentration of PEG decreases with an increase of the degree of PEG polymerization and salt concentration. The width of the coexistence region of coil and globule was found to be dependent on salt concentration and degree of polymerization of PEG. It was found that DNA undergoes re-entrant globule–coil transition in concentrated solution of high-molecular weight PEG. These experimental results correspond well to the theoretical predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.