Abstract
Some innovative nuclear power plant proposals consider for the design tubes of considerable thickness subjected to external pressure (e.g., steam generators tubes). The collapse of thick tubes is expected to be dominated by yielding but, because of the decreasing nature of the postcollapse evolution, interaction with buckling is likely to be significant enough to demand consideration. At the present, few studies have been carried out both experimentally and numerically, as witnessed by the really conservative attitude that codes assume for thick tubes. A numerical investigation has been performed in this context at the Politecnico di Milano, which was originally intended as a support for requesting a relaxation of American Society of Mechanical Engineers (ASME) regulations. Actually, in 2007, ASME code case N-759 was approved, permitting significant thickness saving in the tube design. Nevertheless, the numerical investigation was pursued to assess the influence of different parameters, such as eccentricity, initial stresses, and material hardening, on the collapse of tubes with diameter to thickness ratios D/t<20. Results are thought to be useful under at least two respects: first, providing some understanding on the collapse behavior in a thickness range so far unexplored; second, giving an indication on the assumptions on which computer codes ought to be based when numerical analyses are required.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.