Abstract

Point-vortex models are presented for the generalized Euler equations, which are characterized by a fractional Laplacian relation between the active scalar and the stream function. Special focus is given to the case of the surface quasigeostrophic (SQG) equations, for which the existence of finite-time singularities is still a matter of debate. Point-vortex trajectories are expressed using Nambu dynamics. The formulation is based on a noncanonical bracket and allows for a geometrical interpretation of trajectories as intersections of level sets of the Hamiltonian and Casimir. Within this setting, we focus on the collapse of solutions for the three-point-vortex model. In particular, we show that for SQG the collapse can be either self-similar or non-self-similar. Self-similarity occurs only when the Hamiltonian is zero, while non-self-similarity appears for nonzero values of the same. For both cases, collapse is allowed for any choice of circulations within a permitted interval. These results differ strikingly from the classical point-vortex model, where collapse is self-similar for any value of the Hamiltonian, but the vortex circulations must satisfy a strict relationship. Results may also shed a light on the formation of singularities in the SQG partial differential equations, where the singularity is thought to be reached only in a self-similar way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.