Abstract

To evaluate the collapse pressure of the steel–composite hybrid cylinders under external pressure without excessive computational cost, an analytical formula was derived in this study. The rationality of the derived formula was verified by the comparison with experimental and numerical results. The experimental results indicate that samples are manufactured and tested with good quality. The derived formula considered material failure and could reasonably predict the collapse pressure of the steel–composite hybrid cylinders with a maximum difference of 3.1%. Moreover, the effects of the wrap angle, thickness, and length on the collapse pressure of the hybrid cylinders were theoretically analyzed. The loading capacity of the hybrid cylinders was maximized under a wrap angle of ±55° for the composite layer. These findings are mainly because the hoop stress is twice the value of axial stress for a cylinder under uniform pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.