Abstract

Abstract We present results from the first three-dimensional radiation hydrodynamical calculations to follow the collapse of a molecular cloud core beyond the formation of the stellar core. We find that the energy released by the formation of the stellar core, within the optically thick first hydrostatic core, is comparable to the binding energy of the disc-like first core. This heats the inner regions of the disc, drives a shock wave through the disc, dramatically decreases the accretion rate on to the stellar core and launches a temporary bipolar outflow perpendicular to the rotation axis that travels in excess of 50 au into the infalling envelope. This outburst may assist the young protostar in launching a conventional magnetic jet. Furthermore, if these events are cyclic, they may provide a mechanism for intense bursts of accretion separated by long periods of relatively quiescent accretion which can potentially solve both the protostellar luminosity problem and the apparent age spread of stars in young clusters. Such outbursts may also provide a formation mechanism for the chondrules found in meteorites, with the outflow transporting them to large distances in the circumstellar disc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.