Abstract

General relativistic hydrodynamical calculations of the collapse of O + Ne + Mg cores of a 9 solar mass star are reported. Collapse is induced by rapid electron captures as the O + Ne + Mg is burned to nuclear statistical equilibrium. The high entropy in the core after burning leads to a large abundance of free protons which readily capture electrons. This leads to large neutrino losses and a correspondingly small infalling homologous core. The hydrodynamic shock thus forms at a small mass point. The shock stalls before reaching the edge of the O + Ne + Mg core and thereby fails to produce a successful supernova explosion by the direct mechanism. No enhancement in the shock energy due to nuclear burning is found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call