Abstract
Cellular materials with hollow lattice truss topologies exhibit higher compressive strengths than equivalent structures with solid trusses owing to their greater resistance to plastic buckling. Consequently, hollow trusses have attracted interest as the cores for sandwich panels. Finite-element calculations are used to investigate the elastic–plastic compressive collapse of a metallic sandwich core made from vertical or inclined circular tubes, made from annealed AISI 304 stainless steel. First, the dependence of the axial compressive collapse mode upon tube geometry is determined for vertical tubes with built-in ends and is displayed in the form of a collapse mechanism map. Second, the approach is extended to inclined circular hollow tubes arranged as a pyramidal lattice core; the collapse modes are identified and the peak compressive strength is determined as a function of geometry. For a given relative density of hollow pyramidal core, the inclined tube geometry that maximizes peak strength is identified. The predicted collapse modes and loads for the pyramidal core are in excellent agreement with measurements for the limited set of experimentally investigated geometries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.