Abstract

AbstractRecently porous materials are widely used in civil and mechanical engineering. In particular, such porous materials as metal and polymer foams have applications in lightweight structures. From mechanics point of view foams can demonstrate unusual behavior such as strain localization related to foam cells buckling under certain loads.The aim of this work is the elaboration of the model of foam material taking into account the cell collapse. We consider the cell collapse initiation during the elastic instability and its further evolution under loading. The geometrical structure of foam is generated with the use of the Voronoi algorithm. Based on stochastic distributions of cells we create various geometrical models of foams. The influence of the cell volume, wall thicknesses and material properties of the foam material on critical loads is obtained. The calculations are performed with the use of Abaqus CAD/CAE system. (© 2011 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.