Abstract
Although arterial stiffness is an independent cardiovascular risk factor associated with both aging and hypertension, relatively little is known regarding the structural changes in the vessel wall that occur with vessel stiffening. We determined if collagen type-I metabolism is related to arterial stiffening in both hypertensive and normotensive subjects. Arterial stiffness was assessed by aortic pulse wave velocity (PWV) and augmentation index (AIx) in 46 subjects (48.7 +/- 2 years, 32 hypertensives) and related to circulating markers of collagen type-I turnover. Collagen synthesis was assessed by the measurement of carboxy-terminal peptide of procollagen type-I (PIP) and collagen degradation by the measurement of carboxy-terminal telopeptide of collagen type-I (ICTP), by quantitative immunoassay. Matrix metalloproteinase-1 (MMP-1) and the tissue inhibitor of metalloproteinase-1 (TIMP-1) were also quantified by immunoassay. The ratio of collagen type-I synthesis to degradation was negatively correlated with both PWV (P<0.05) and AIx (P<0.05), whereas plasma MMP-1 levels displayed a positive correlation with both PWV (P<0.01) and AIx (P<0.01), after adjustment for age and mean arterial pressure. The relationship between collagen type-I turnover and arterial stiffness was similar in both the normotensive and hypertensive subjects. Although circulating markers of collagen synthesis were increased in the hypertensive subjects, this was not related to arterial stiffness. Collagen type-I degradation is increased in relation to collagen type-I synthesis in subjects with stiffer arteries. Matrix metalloproteinase-1, the enzyme responsible for collagen type-I degradation, is positively related to both large elastic and muscular artery stiffness in normotensive and hypertensive subjects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.