Abstract
BackgroundBreast cancer, a common malignant tumor, has been considered as the leading cause of cancer-related death in women. Collagen type X alpha 1 (COL10A1) is overexpressed in breast cancer. The current study was designed to determine the functional involvement and regulatory mechanism of COL10A1 on the growth and metastasis of breast cancer.Material/MethodsCOL10A1 and Prolyl 4-hydroxylase beta polypeptide (P4HB) expressions in normal tissues and tumor tissues of breast cancer patients were obtained from the GEPIA dataset. COL10A1 and P4HB levels in breast cancer cell lines were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Furthermore, the interaction between COL10A1 and P4HB was confirmed by co-immunoprecipitation (Co-IP) assay. Cell Counting Kit-8 (CCK-8) and colony formation assay were applied to evaluate cell proliferation and clone-forming abilities of breast cancer cells. In addition, wound healing assay and transwell assay were performed to measure cell migration and invasion capabilities, respectively, in breast cancer.ResultsThe GEPIA dataset presented overexpressed COL10A1 and P4HB in tumor tissues of breast cancer patients. COL10A1 and P4HB expression levels were greatly upregulated in breast cancer cell lines. In addition, COL10A1 could directly interact with P4HB. Functionally, overexpressed COL10A1 boosted the proliferation and metastasis of breast cancer cells and silenced COL10A1 impeded the progression of breast cancer. More importantly, knockdown of P4HB weakened the promoting effects of overexpressed COL10A1 on cell proliferation, migration, and invasion in breast cancer.ConclusionsCOL10A1 promotes the malignant progression of breast cancer by upregulating P4HB expression, indicating that COL10A1 functions as an oncogene in breast cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.