Abstract
Collagen type I α-1 chain (COL1A1) is closely involved in the advancement of various tumors, yet the role of COL1A1 in the progression of glioma is not clear. Herein, we evaluated the effect of COL1A1 on glioma cell proliferation. The effect of COL1A1 on glioma cell proliferation was assessed through overexpression or knockdown of COL1A1. The CCK-8 and colony formation assays, as well as immunohistochemistry (IHC) were used to detect COL1A1 expression in different glioma grades. U-87MG as well as U-251MG cells were stably-inserted with lentivirus containing COL1A1 through transfection, we additionally used qRT-PCR as well as Western blot assay to validate their overexpression efficiencies. COL1A1 mRNA and protein levels were upregulated in the high-grade glioma (HGG) compared to the low-grade glioma (LGG). COL1A1 IHC score was remarkably higher in HGG than LGG. The staining index (SI) further showed that COL1A1 protein levels were higher in HGG than LGG. The Kaplan–Meier analysis showed that elevated COL1A1 mRNA levels were obviously correlated with lower overall survival (OS) and disease-free survival (DFS) for brain glioma patients. COL1A1 mRNA and protein levels were markedly upregulated in human glioma cell lines when compared with brain astrocyte cell lines. The high expression level of COL1A1 facilitated glioma cell proliferation. COL1A1 knockdown remarkably inhibited glioma cell proliferation. Thus, this research shows that COL1A1 promotes glioma cell proliferation and is closely related to glioma prognosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.