Abstract

Pulmonary artery endothelial cells were isolated from bovine fetal blood vessels and used for biosynthetic studies. At confluence, cultures were incubated in minimal essential medium (MEM) without serum containing [U-14C]proline. After 24 hours, medium was removed and labeled proteins were precipitated by the addition of ammonium sulfate and fractionated by diethylaminoethyl (DEAE)-cellulose chromatography. The elution profile showed four major peaks and one minor peak. Fractions within each peak were pooled, subjected to digestion by chymotrypsin and/or collagenase, and analyzed by polyacrylamide gel electrophoresis. Peak l contained a collagen which contained approximately 6% of the 3-hydroxyproline isomer while total hydroxyproline content was approximately 45%. This material was digested by purified bacterial collagenase and had a mobility slightly slower than that of alpha 1(III) which did not change under conditions that reduce disulfide bonds. Upon digestion with chymotrypsin under conditions where native procollagens are converted to alpha-chains, this material was digested. These properties suggest that this material is type VIII or EC (endothelial cell) collagen. Peak 2 contained substantial fibronectin while peak 3 contained primarily type III procollagen. The last major peak contained a mixture of collagenous and noncollagenous material. Upon digestion with chymotrypsin, several peptides were generated which were sensitive to bacterial collagenases. The two major chymotrypsin-resistant components had mobilities slower than that of alpha(III) and were not disulfide-bonded.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call