Abstract

Adipose tissue (AT) has a dynamic extracellular matrix (ECM) surrounding adipocytes that allows for remodeling during metabolic fluctuations. During the progression of obesity, AT has increased ECM deposition, stiffening, and remodeling, resulting in a pro-fibrotic dysfunctional state. Here, the incorporation of ethylene glycol-bis-succinic acid N-hydroxysuccinimide ester (PEGDS) allows for control over 3D collagen hydrogel stiffness and architecture to investigate its influence on adipocyte metabolic and fibrotic function. Upon stiffening and altering ECM architecture, adipocytes did not alter their expression of key adipokines, leptin, and adiponectin. However, they do increase actin cytoskeletal fiber formation, pro-fibrotic gene expression, ECM deposition, and remodeling within a stiffer, 3D collagen hydrogel. For example, COL6A3 gene expression is upregulated approximately twofold, resulting in increased deposition of pericellular collagen VI alpha 3 surrounding adipocytes. Furthermore, inhibition of actin contractility results in a reversal of pro-fibrotic gene expression and ECM deposition, indicating that adipocytes are mediating mechanical cues through actin cytoskeletal networks. This study demonstrates that ECM stiffness and architecture plays a critical regulatory role in adipocyte fibrotic function and contributes to the overall pro-fibrotic dysfunctional state of AT during the progression of obesity and AT fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.