Abstract

BackgroundStromal-epithelial interactions are of particular significance in breast tissue as misregulation of these interactions can promote tumorigenesis and invasion. Moreover, collagen-dense breast tissue increases the risk of breast carcinoma, although the relationship between collagen density and tumorigenesis is not well understood. As little is known about epithelial-stromal interactions in vivo, it is necessary to visualize the stroma surrounding normal epithelium and mammary tumors in intact tissues to better understand how matrix organization, density, and composition affect tumor formation and progression.MethodsEpithelial-stromal interactions in normal mammary glands, mammary tumors, and tumor explants in three-dimensional culture were studied with histology, electron microscopy, and nonlinear optical imaging methodologies. Imaging of the tumor-stromal interface in live tumor tissue ex vivo was performed with multiphoton laser-scanning microscopy (MPLSM) to generate multiphoton excitation (MPE) of endogenous fluorophores and second harmonic generation (SHG) to image stromal collagen.ResultsWe used both laser-scanning multiphoton and second harmonic generation microscopy to determine the organization of specific collagen structures around ducts and tumors in intact, unfixed and unsectioned mammary glands. Local alterations in collagen density were clearly seen, allowing us to obtain three-dimensional information regarding the organization of the mammary stroma, such as radiating collagen fibers that could not have been obtained using classical histological techniques. Moreover, we observed and defined three tumor-associated collagen signatures (TACS) that provide novel markers to locate and characterize tumors. In particular, local cell invasion was found predominantly to be oriented along certain aligned collagen fibers, suggesting that radial alignment of collagen fibers relative to tumors facilitates invasion. Consistent with this observation, primary tumor explants cultured in a randomly organized collagen matrix realigned the collagen fibers, allowing individual tumor cells to migrate out along radially aligned fibers.ConclusionThe presentation of these tumor-associated collagen signatures allowed us to identify pre-palpable tumors and see cells at the tumor-stromal boundary invading into the stroma along radially aligned collagen fibers. As such, TACS should provide indications that a tumor is, or could become, invasive, and may serve as part of a strategy to help identify and characterize breast tumors in animal and human tissues.

Highlights

  • Stromal-epithelial interactions are of particular significance in breast tissue as misregulation of these interactions can promote tumorigenesis and invasion

  • The mechanisms mediating the effects of the extracellular matrix (ECM) on breast carcinoma development in vivo are largely unknown, contributing factors may be adhesion mediated signaling and mechanical signals imparted on mammary epithelial cells from surrounding type-I collagen-rich stroma, either directly or across basement membrane proteins

  • The normal mammary gland Examination of the ECM surrounding mammary epithelial cells revealed that the majority of the stroma is fibrillar collagen, which was seen surrounding epithelial cells (Figure 1)

Read more

Summary

Introduction

Stromal-epithelial interactions are of particular significance in breast tissue as misregulation of these interactions can promote tumorigenesis and invasion. As little is known about epithelial-stromal interactions in vivo, it is necessary to visualize the stroma surrounding normal epithelium and mammary tumors in intact tissues to better understand how matrix organization, density, and composition affect tumor formation and progression. Type I collagen is a prevalent component of the stromal extracellular matrix; its expression being spatially and temporally regulated during mammary ductal formation, suggesting it plays important roles in development [4]. Consistent with this idea, decreasing the levels of α2β1 integrin, a primary type I collagen receptor, disrupts mammary epithelial tubulogenesis in vitro [2] and alters branching morphogenesis in vivo [5], respectively. One important step to elucidating these signaling interactions is to determine the organization of the collagenous stroma surrounding both normal mammary glands and tumors within intact tissue so as to better understand the cell-matrix interaction and how matrix organization, density, and composition affect tumor formation and progression

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call