Abstract

Acetylcholinesterase (AChE) at the neuromuscular junction (NMJ) is anchored to the synaptic basal lamina via a triple helical collagen Q (ColQ) in the form of asymmetric AChE (AChE/ColQ). We exploited the proprietary NMJ-targeting signals of ColQ to treat congenital myasthenia and to explore the mechanisms of autoimmune myasthenia gravis (MG). Mutations in COLQ cause congenital endplate AChE deficiency (CEAD). First, a single intravenous administration of adeno-associated virus serotype 8 (AAV8)-COLQ to Colq−/− mice normalized motor functions, synaptic transmission, and partly the NMJ ultrastructure. Additionally, injection of purified recombinant AChE/ColQ protein complex into gluteus maximus accumulated AChE in non-injected forelimbs. Second, MuSK antibody-positive MG accounts for 5-15 % of MG. In vitro overlay of AChE/ColQ to muscle sections of Colq−/− mice, as well as in vitro plate-binding of MuSK to ColQ, revealed thatMuSK-IgG blocks binding of ColQ to MuSK in a dose-dependent manner. Passive transfer of MuSK-IgG to wild-type mice markedly reduced the size and intensity of ColQ signals at NMJs. MuSK-IgG thus interferes with binding of ColQ to MuSK. Elucidation of molecular mechanisms of specific binding of ColQ to NMJ enabled us to ameliorate devastating myasthenic symptoms of Colq−/− mice and also to reveal underlying mechanisms of anti-MuSK-MG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call