Abstract

AbstractINTRODUCTIONTo preserve knee function and reduce degenerative, meniscal tears should be repaired where possible. Meniscal wrapping with collagen matrices has shown promising clinical outcome (AAOS meniscal algorithm), however there is limited basic science to support this.AIMto model the contact pressures on the human tibial plateau beneath a (1) a repaired radial meniscal tear and (2) a wrapped and repaired radial meniscal tear.METHODOLOGYComplete anterolateral radial tears were formed across 4 lateral human menisci, before repairing with ‘rip-stop’ H sutures using 2mm Arthrex Meniscal Suture tape. This was then repeated with the addition of a ChondroGide collagen matrix wrapping. From this experimental setup a finite element (FE) analysis model was construted.FE models of the two techniques (i) suture alone and (ii) suture and collagen-matrix wrap, were then modelled; bone was linear elastic, articular cartilage was a hyperelastic Yeoh model, and a linear elastic and transversely isotropic material model for the meniscus.The contact areas of the articulating surfaces, meniscus kinematics, and stress distribution around the repair were compared between the two systems.RESULTSMeniscal suture-tape repair had higher local stresses and strains (σ_max=51 MPa ε_max=25%) around the repair compared to with Collagen wrapping (σ_max=36.6MPa ε_max=15%). Radial displacement and pressure on the meniscal contact surfaces were higher in the suture only repair.CONCLUSIONCollagen-matrix wrapping strengthens the repair, reducing local peak stresses and strains around the suture-tape. This could reduce the chance of suture-tape pull-out and subsequent repair failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.