Abstract

Whether or not exercise training of sufficient intensity and duration to produce left ventricle (LV) hypertrophy also regulates deposition of interstitial collagen and cross-linking at the pretranslational level is unknown. Therefore, the effects of exercise training on gene expression for the two principal fibrillar collagens in LV, types I and III, were assessed in young adult (5 mo), middle-aged (15 mo), and old (26 mo) rats. We also evaluated the potential interaction of changes in mRNA for these procollagens with alterations in LV extracellular matrix characteristics by simultaneously measuring collagen concentration (hydroxyproline) and extent of mature collagen cross-linking (hydroxylysylpyridinoline, HP). Ten weeks of treadmill running resulted in LV hypertrophy and an increased maximal oxygen uptake in all three age groups of trained rats compared with sedentary controls. Percent collagen in rat LV almost doubled (P < 0.0001) from 5 to 26 mo of age, an increase unaffected by exercise training. With aging, a significant decline in expression of mRNAs for both collagen type I (P < 0.005) and type III (P < 0.001) was observed in LV free wall (LVF) but not septum (LVS). Training prevented this decline in LVF mRNAs for the two principal fibrillar collagens in middle-aged rats whereas it attenuated the decline in senescent animals. HP concentration increased significantly with aging in both LVF (P < 0.005) and LVS (P < 0.01). Training modulated this effect, but again only in LVF, so that HP was significantly lower (P < 0.05) in this region of the LV in old trained rats compared with sedentary counterparts. We conclude that exercise training modulates the effects of aging on collagen gene mRNAs and HP cross-linking regionally within the LV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.